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CORRELATION BETWEEN THERMAL ELECTRON TRANSFER IN SOLUTION AND PHOTOELECTRON
EMISSION
PAUL DELAHAY

Department of Chemistry, New York University, New York, New York 10003, U.S.A.

The activation free energy for electron transfer in solution or at
electrodes is correlated to the corresponding Franck-Condon determined
reorganization free energy Rm for photoelectron emission. Excellent to fair
agreementAis obtained between the activation free energies predicted from R

and experimental values. Data are given for V2+, Cr2+, Mn2+, Fe2+,

2+

Co™ and Fe(CN)g' in aqueous solution.

1. Introduction

z+1)* (z 2 0) in solution

Electron transfer between species mz* and M(
can be studied either as a homogeneous process such as electron exchange
between isotopes of M or as a heterogeneous process at a metal or
semiconductor electrode. The kinetics of these processes is characterized by
a free energy of activation AGi for electron transfer between isotopes and
AGz for electrode processes. These thermal electron transfer processes have
their optical counterparts, namely intervalence-transfer absorption and
photoelectron emission by solutions.

Correlations can be established between the preceding four types of
electron transfer. The theories of electron transfer [1,2] of Marcus [3] and
Hush [4] provide the key to such correlations. (See [1,2] for other

theories.) The free energies of activation AG: and AG: in these theories

are expressed as functions of reorganization free energies Rx and Re’

respectively., The latter are related to each other. Marcus [5] correlated in

this fashion electron transfer in solution and at electrodes. Hush [6]
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established the correlation between thermal electron transfer and
intervalence-transfer absorption spectra. We examine in the present paper the
relationship between thermal electron transfer and the energetics of
photoelectron emission by solutions. This type of optical electron transfer
is charactertzed by a reorganization free energy Rm which can be determined
experimentally as was recently shown [7-9]. The correlation between the
experimental quantities Aﬁtbor AG: and Rm thus obtained provides a very
direct tést of theories of electron transfer in solution. Such a test is also
provided, albeit in a different way, by the widely obeyed Marcus cross
relation [2,10]. The present test, just as the cross relation, is less
dependent on model calculations of the reorganization free energies RX and
Re than previous comparisons of experimental and predicted values of AGi
[2] and 6% [11].

2. Reorganization free energy for photoelectron emission by solutions

Photoelectron emission by a species mz* (z 2 0) into the vapor phase of
the solution of MZ+ is represented by the two equations

MZ+(z,z) = M(z+1)+(z+1,z) + e (g), (1)

MZL* (201, 2) = MOZD*(ge) 241, (2)
The symbol (z,z) denotes that both electronic and nuclear configurations of
the ligand (if any) and solvent correspond to the ionic charge z+. The same
definition applies to (z+l,z+*l) for the ionic charge (z+l)+. Conversely,
(z+1,z) indicates that the electronic configuration pertains to the charge
(z+1)* whereas the nuclear configuration corresponds to the charge z+
(Franck-Condon principle). Thus, the species produced by (1) reorganizes
according to process (2).

The free energy of emission aG, for (1) in the case of aqueous solutions
is given by-[7-9]

86 = 4G, * 46 - R . (3)
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There, AGH {= 4,50 eV) correlates the free energy level of the normal
hydrogen electrode to the electron vacuum level on the assumption of a
negligible surface potential; aG is the change of standard free energy for the
oxidation of MZ*(z,z) to M(Z+1)+(z+1,z+1); Rm (<« 0) 1s the
reorganization free energy for (2). The free energy AGm was shown [7-9] to
be equal (within ca. *0.1 eV) to the threshold energy determined from
experimental emission spectra. Thus, Rm can be determined experimentally by
app]icafion of eq. (3) provided that aG is known.

The reorganization free energy Rm can be subdivided into inner- and
outer-sphere contributions as is done in electron transfer theories for the
quantities R (chemical) and Re (electrochemical). Thus,

R - Rln + Rout _ (4)
The outer-sphere contribution is interpreted by treating the solvent
macroscopically as a continuous medium, and the inner-sphere contribution is
treated microscopically [1,2].

R;Ut

The outer-sphere contribution is calculated by application of

the Marcus theory [12] of non-equilibrium po]arization. By starting with egs.

(6.59) and (6.62) in [2] or eq. in [12], one obtains (rationalized units)
out _ -1
R eof2) (e )J[ z+l (5)
where €, is the permittivity of free space; €op and €, are the optical

and static dielectric constants of the solvent, respectively; Ez+1 and Ez

are the electric fields in vacuo of the charges (z+l)|e| and zlel,
respectively; and V is the integration volume. It will be assumed to simplify
matters that the ions involved have the same size. This is a minor
approximation. The volume V extending to infinity is supposed to surround a

sphere of radius a for both fields in (5), and the Coulombic potential is

integrated from r = a to e Thus,

ROUE L (1/4%)(:;%> - ;he?sza. | (6)
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The contribution R;Ut given by (6) is-independent of the ionic charge

of the species emitting photoelectrons. Thus, REUt according to this

model should be the same for emission by Mz+(z,z) and M(Z+1)+(z*1,z+l)

ions provided the radius 5 is the same. Conversely, the inner-sphere
contribution R;n is expected to depend on the ionic charge z of the

emitter because the force constants determining its magnitude [2,11] vary with

Z. The dependence of Rm on z nevertheless should not be a strong one

out

because Rm

is markedly larger than R;“ (sec. 3). The application

-1 -1 .
op " €s ) to the calculation
2

of the reorganization free energy in [8] leads to a (z+l)2 - z° dependence

of the Born equation with the factor {

and is not justified.

3. Correlation between aG_ for electron exchange and R_ for photoelectron

emission

Electron exchange between cations of ionic charge z*+ and (z+1)+ (isotope
labeling) will be considered in this section. The change of free energy is
equal to zero in that case. Moreover, the work W required to bring from
infinity the two reactants together in the activated complex is equal to the
work wp needed to perform the same operation for the products. Hence,
Wp = W = 0, and one has [1-4]

a6 =W + R /4. (7)

A relationship between Rx of (7) and Rm of (3) will be obtained. The
method of calculating Rx is briefly recalled for that purpose. The

outer-sphere contribution Rg"t

is calculated [1-4] by assuming that the
separation between the two ions of the activated complex is sufficient to
preserve the spherical symmetry of the field of each ion but not sufficient to
allow the neglect of Coulombic interaction. R2Ut is then given by an
equation i&entical to (6) (with a plus sign) and the factor (1/2a1 + 1/2a2

- l/r1 2) instead of 1/2a. The change of sign arises because Rx is
b
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defined in terms of the difference of free energies between the activated
complex and the broduct of electron transfer (eq. (6.73) in [2]) whereas R,
is the change of free energy for process (2). The quantities a, and 3,
are the radii of the ions and rl,2 is the distance between the centers of
the reactants in the activated complex. In general, the radius a, is set
equal to the sum of the crystallographic radius of the ion and the diameter
(2 x 1.38 R) of the water molecule [13]. Moreover, one sets r'l’2 = * a,.
If one assumes 3 =3, =3, the final equation for R2Ut is the same
as eq. (6) except for the sign. Thus, Rg“t = }R:“t! according to
this model. Two ions are involved as reactants in the exchange reaction
whereas photons are absorbed by single ions. Hence, R:" = ZIR;"[.
In view of eq. (4) and a similar relationship for Rx, one has

R, = IR| + IRI7L. (8)
This is the relationship needed to test eq. (7). The quantity Rm is

experimental (cf. eq. (3)) and R;" is.calculated for a bond-stretching
model from eq. (6) in [10].

The computation of Rx by application of (8) does not require the use of

" the continuous medium model and the attending selection of the radius a and

the usual assumption of dielectric unsaturation. The use of eq. (8) therefore
removes the uncertainty resulting from the model computation of the

RQUt in the verification of eq. (7). Equation

outer-sphere contribution
(8), it should be noted, is not rigorous because it was obtained by assuming
that the fields of the two reactants in the activated complex are spherically
symmetrical. This is an approximation for which somewhat tentative
corrections have been proposed [2]. Such corrections will not be attempted
here to preserve the simplicity of the treatment.

Equations (7) and (8) were applied to the calculation of AGt and

comparison of the results with experiment. The work W in (7) was




calculated from [3]

- ‘ W, = 2(z+l)(1/4neoes)(e2/2a)F(u). (9)

where the function F(u) of the ionic strength u corrects the Coulombic term in
(9) for finite dilution. The linearized expression [14], F(u) = (1 + 2a<)'1,
was used where ¢ is the reciprocal Debye lengthk. This expression for F{u) and
the corresponding exponential form exp (-2a<) are very crude at high ijonic
strength. Fortunately this does not matter much because W is small in
comparisén with AG: for the systems studied here.

Values of AG: calculated from (7) and (8) are compared with the

experimental results in Table 1. The agreement is excellent for Mn2+,

2+ 2

Fe® , Co * but not as good for the other ions. The discrepancy may have

several possible causes: e.g., kinetic complications in the experimental
determination of AG:, transmission coefficient appreciably smaller than

unity, departure from the medium-overlap case assumed in [3,4]. Errors in the
determination of Rm from threshold energy measurements could hardly account
for the discrepancies in Table 1.

The value of {R;“t{

= {le - [R;n{ computed from the data in
Table 1 will be compared with the values of IR;“tI calculated for the

continuous-medium model. The latter is 1.14+0.01 eV for the five cations [11]
R;“t! calculated from the data in Table 1 are

1.72, 1.47, 1.28, 1.65, 1.85 eV from V2+ to C02+. These values hold

whereas the values of |

within ca. *0.3 eV because of the uncertainty on Rm (surface potential,
extrapolation method) and the approximations and estimates in the computation

2+ matches perhaps not fortuitously the

of R;". The minimum for Mn
minimum in the corresponding sequence of the absolute values of the free
energies of solvation [15], 19.12, 19.28, 18.92, 19.58, 20.85 eV. It seems

that the continuous-medium model yields values of leUt[ which are too

low for the values of a in Table 1 for the five cations examined here.
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The opposite holds for Fe(CN)g-, but the difference between the value of

0.86 eV from the model [11] and 0.29 eV from Table 1 appears too great and

probably reflects errors, at least in part (preliminary value of R, in (9] )
from analysis of literature data). The foregoing conclusion about the

relative inadequacy of the continuous-medium model is not surprising since

this model is not very satisfactory either in the treatment of ionic solvation

{16,17].

4. Correlation between AGj for electron transfer at electrodes and R for

photoelectron emission

The counterpart of (7) for electron transfer at electrodes at zero
overvoltage is [5,10]

865 = W+ (R/A)L * (W - wr)/Re]Z. (10)

e P
There . is the work done to bring the reactant from the bulk of the
solution to the site near the electrode at which electron transfer occurs.
The same definition applies to wp for the product of the reaction. The work
terms in (10) are of the form w, = z|ej$ and Wy = (z+1)!e!¢ for the
oxidation of a species with ionic charge zle| to one with charge (z+1)'e .

The potential ¢ can, in principle, be calculated from double layer theory.

Thus, wp - W = wr/z, and eq. (10) becomes, after neglecting the term

(1/2%) (w.1R,)?

AG: = (1 * 1/2z)w, *+ R /4. (11)

The reorganization free energy Re is given according to Marcus [5,10] by

an equation similar to (6) except that the factor 1/2a is replaced by

1), where a is now the distance from the center of the

ol e

(12)(a”t - v
reactant to the electrode and re = 2a pertains to the image forces. The

value of a of sec. 3 is used in practice. Thus, the factor 1/2a of eq. (6) is |
now replaced by l1/4a, and therefore RZ”t = IR;“t/Z]. Taking

R;" = R;", one obtains |

[ e




Rg = (L/2)[IR | + [RI"

1. (12)
S By comparing (8) and (12) one verifies that Re = R /2 in agreement with
[5,10]. This relationship is not rigorous because it corresponds to a
simplified treatment of the image force problem.
Equations (11) and (12) are the counterparts of (7) and (8). The quantity
AG: can be calculated from Rm provided that R;" and w. can be
computed. The term R;n is treated as in sec. 3, but the calculation of
W, from double layer theory is tentative at best (except for the mercury
electrode [11]). We therefore use Rm and experimental values of AG: to
compute Wy The electrochemical work term W, can also be computed as
follows from the experimental values of AG: and AG: of Tables 1 and 2.

Thus, Rx is computed from (7) using the experimental AG:‘S and calculated

chemical wr's from Table 1. The quantity Re follows from Re = Rx/2
according to Marcus [5,10]. The electrochemical work W, is then computed

from (11) using the experimental AG:'S from Table 2. The agreement between
the two sets of electrochemical wr's in Table 2 is very good especially for

a comparison involving three different experimental methods (AG:, aG~, R

:’ m)'
5. Conclusion
Excellent to fair agreement was obtained between experimental activation
- free energies for chemical and electrochemical electron transfer in solution
and the values predicted from the corresponding Franck-Condon determined
reorganization free energies for photoelectron emission. The results reported

here support the basic theoretical model [3-5] for electron transfer in

solution used in this waork.
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Table 1

Correlation between AGt for electron exchange and Rm for photoelectron 1

DS o

, emission

t )

g a) in b) b) c) * * d)

. -Rm -Rm a W AGx AGX

f (calculated)(experimental)

| (ev) (V)  (A)  (ev) (ev) (eV)

é

i' 2+

; v 2.13 0.41 3.48  0.04 0.68 0.87

§ cret 2.05 0.58 3.49  0.05 0.71 1.03

| Mne* 2.02 0.74 3.5  0.03 0.72 0.75

| Fel” 2.11 0.46 3.51  0.06 0.70 0.69

| e 2.26 0.41 3.48  0.05 0.72 0.72
Fe(CN)g' 0.67 0.33  4.65  0.04 0.30 0.47

a) From [8] except for Fe(CN)g' (preliminary result [9] from.analysis of

literature daca)).
b) From [11].
c) From (9) with F(u) calculated for the prevailing u's in the experimental

determination of the AG:'S.

d) From [2] and references cited therein.
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Table 2

11

Correlation between AGZ for electron transfer at electrodes and Rm for

photoelectron emission

Ry a) AG: b) " c) " d)
(experimental)

(ev) (ev) (ev) (eV)
v 1.27 0.38 0.05 -0.03
s 1.32 0.54 0.17 0.04
Mns* 1.38 0.43 0.07 0.06
Fe?” 1.29 0.37 0.04 0.04
co? 1.34 0.59 0.20 0.20
Fe(CN)g™ 0.53 0.30 0.15 0.08

a) From values of Rm and R;n in Table 1 and eq. (12).

b) From [11] and references therein.

¢) From egs. (11) and (12).

d) From experimental values of AG: and AG: (see text).
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